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FI-CCD CTI degradation
• Charge transfer inefficiency (CTI) of front-illuminated (FI) CCDs

– Rapid increase in CTI (4×10-5/orbit @ -100 °C) after first light

MIT ACIS
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BI-CCD CTI stability
• Charge transfer inefficiency (CTI) of back-illuminated (BI) CCDs

– Relatively stable CTI (<0.1×10-5/orbit @ -100 °C)

MIT ACIS
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ACIS CTI anomaly
• On-orbit evidence for damage by soft (0.1–0.5 MeV) protons

– ACIS had been in focal plane during 8 radiation-belt passages.
• Focal plane is well shielded against penetrating radiation.

– Line-of-sight shielding analysis missed scattering from mirrors.
• No degradation occurred with ACIS in NIL position during perigee.
• Inserted gratings substantially reduced CTI degradation.

– CCD degradation mode suggested soft protons.
• Increase in CTI of back-illuminated CCDs remained small.

– BI CCDs have 45-µm-thick Si shielding charge-transfer channel.
• Dark current of all CCDs remained small.
• Constant serial CTI showed that frame-store area is shielded.

– Cal measurements before first light found no CTI degradation.
• SRIM transport to focal plane is consistent with AP8 environment.
• On-ground proton irradiation of CCDs reproduced in-flight results.
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Radiation protection
• The Chandra X-ray Observatory is in a high elliptical orbit.

– 140-Mm-altitude (23-R⊕ geocentric) apogee, 2.65-d period
– 10-Mm-altitude (3-R⊕ geocentric) perigee ⇒ radiation belt
– Only real-time communication during DSN contacts

• Nominally 3 DSN contacts/d for data dumps and commanding
• Normally executes 1-week observing plan

• Revised operating procedures to protect ACIS against radiation.
– Radiation-protection configuration

• Translate ACIS into NIL position; power down video boards.
• Close door of HRC (in focal position); ramp down high voltage.
• Retract LETG or HETG from optical path, for most belt passages.

– Radiation protection during all belt passages
– Radiation protection strategies for space weather

• Autonomous, commanded, and scheduled protection
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Management strategies
• Scheduled protection

– Move ACIS to NIL position for all radiation-belt passes.
• Estimate inner-magnetosphere environment from AP8.

– Pad predicted boundary against inaccuracies and variations.

• Commanded intervention
– Monitor estimated soft-proton environment in Chandra’s orbit.

• Developed model for entire Chandra soft-proton environment.
• Use real-time space-environment data to drive model.

– When needed, halt load and command ACIS to NIL position
• Typically wait for DSN contact, but can arrange special comm.

• Autonomous protection
– Chandra radiation monitor (EPHIN) measures hard-proton flux.
– Upon trigger, OBC halts load and moves ACIS to NIL position.

• Avoids rapid CTI degradation from rad-belt-config error or SEP.
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EPHIN radiation monitor
• Description of Chandra radiation monitor

– Electron, Proton, Helium Instrument (EPHIN)
• 4 electron channels (0.25–10.4 MeV) plus integral (> 8.7 MeV)
• 4 proton channels (4.3–53 MeV) plus integral (> 53 MeV)
• 4 helium channels (4.3–53 MeV/n) plus integral (> 53 MeV/n)

– SOlar & Heliosphere Observatory (SOHO) flight spare
• University of Kiel COSTEP (LION+EPHIN) experiment

• Use for Chandra
– Record all EPHIN channels for download during DSN contacts.
– Monitor 3 channels for triggering autonomous protection.

• Defense against rapid damage to instruments
– Large solar proton events (SPE)
– Radiation-belt entry without proper protection of instruments 

• P4 (4.3–7.8 MeV), P41 (41–53 MeV), and E1300 (2.6–6.2 MeV)
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Real-time environment
• Chandra radiation-monitor real-time data during DSN contacts

– Nominally 3 1-h DSN contacts/d
– Not sensitive to lower-energy (< 4 MeV) protons

• NOAA Space Environment Center (SEC) provides real-time data
– Space-environment data Updated at 1- or 5-min intervals
– NOAA’s Geostationary Operational Environmental Satellites

• GOES X-ray, energetic proton & electron detectors; magnetometer

– NASA’s Advanced Composition Explorer (ACE)
• In L1 orbit, 0.01-AU sunward (solar-wind upstream)
• Relevant ACE instruments

– Solar Isotope Spectrometer (SIS) ⇒ hard protons
– Electron, Proton, Alpha Monitor (EPAM) ⇒ suprathermal ions
– Magnetometer & Solar-Wind EPAM ⇒ thermal plasma and field

– MAG-SWEPAM-driven predictor of geomagnetic activity (Kp)
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GOES EPHIN estimator
• NOAA SEC data

– RT hard 
protons

• Use for Chandra
– Indicator of 

autonomous 
safing 
• GOES-P2 ⇒

EPHIN-P4
• GOES-P5 ⇒

EPHIN-P41

– Head start on 
re-planning

Solar protons > 5 MeV typically penetrate to geosynchronous orbit (6.6 R⊕ ).

SAO CXC

Autonomous safing threshold

Autonomous safing threshold
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ACE EPAM soft protons
• NOAA SEC data

– RT soft protons
– RT soft electrons

• Use for Chandra
– Real-time proton 

environment
• All for solar wind
• Partial for 

magnetosheath & 
magnetosphere

– Damaging protons
• EPAM-P3 channel 

0.14-MeV protons
– CXC alert if 

fluence high NOAA SEC
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Chandra radiation model
• Archival-data-based CRM

– 0.14-MeV protons
• Geotail EPIC
• Polar CEPPAD

– Streamline mapping
• GSM coordinates

– Correlated to Kp

• Magnetosphere
• Magnetosheath
• Solar wind

• CRM flux
– Calculate flux in orbit
– Integrate to fluence
– Project future fluence
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Jacobs Sverdrup
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ACE MAG-SWEPAM
• NOAA SEC data

– RT solar wind
• Density & speed
• Magnetic field
• Temperature

– RT Costello Kp

• ACE-driven 
neural net

• Geomagnetic 
activity

• Use for Chandra
– Kp-driven CRM

• RT soft proton
• ∆Kp=1 ⇒ proton 

flux roughly double NOAA SEC
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Real-time CRM estimator
• Inputs

– ACE EPAM P3 ⇒
solar-wind 
0.14-MeV-p flux 

– ACE MAG-
SWEPAM ⇒ Kp

• Kp + CRM ⇒
magnetospheric  
0.14-MeV-p flux

– Chandra config. 
⇒ transmission
• HRC: 0
• HETG-ACIS: 0.2
• LETG-ACIS: 0.5
• Bare ACIS: 1

SAO CXC
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FI-CCD CTI status
• Initial degradation

– ∆CTI=12×10-5

– 3×1012 0.14-MeV
p/(cm2 sr MeV)
• 8 rad-belt passes 
• AP8 environment

– 4×10-17/AP8-fluence
• Ensuing degradation

– dCTI/dt=0.4×10-5/y
– 0.09×1012 0.14-MeV

p/(cm2 sr MeV)/y
• Rad-belt protected
• CRM environment

– 5×10-17/CRM-fluence SAO CXC
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Summary
• Identified cause of ACIS CTI anomaly.

– Soft protons scatter off x-ray mirrors into focal plane.
– Protons reaching buried channel cause displacement damage.

• Stopped rapid degradation of ACIS front-illuminated CCDs.
– Hide ACIS in NIL position during radiation-belt passes.
– Lowered CCD temperature to –120 °C, reducing FI-CCD CTI.

• Implemented strategy to control degradation outside belts.
– Employ autonomous, intervening, and scheduled protection.

• Developed tools to estimate soft-proton flux throughout orbit.

• Radiation-degradation management preserves utility of CCDs.
– FI-CCD CTI is fair and degradation rate is within budget.

• Average I-array CTI = 13×10-5, increasing at 0.39×10-5/y. 

– BI-CCD CTI is good and degradation rate is within budget.
• Center S-array CTI = 1.7×10-5, increasing at 0.13×10-5/y. 
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